
DotNetProcessing Documentation

Table of Contents
 DotNetProcessing Documentation..1

Jonatan Rubio...1
Santi Serrano..1

I. User Documentation..3

Chapter 1. Introduction..4

Chapter 2. The Processing Language..5
2.1. Processing origins...5
2.2. Process VS Timeline...6
2.3. Processing as an intermediate language..6
2.4. Related software..6

 2.4.1. DBN..6
 2.4.2. Logo..8
 2.4.3. Flash..10

 2.4.3.1. Bitmap VS Vectors...10
 2.4.3.2. Animations..12

 2.4.4. Director...12
2.5. Processing is Open Source..13
2.6. Digital art...15
2.7. Processing in the world...17
2.8. First steps...20

Chapter 3. Why DotNetProcessing?..21

Chapter 4. Installation..22
4.1. Prerequisites..22

 4.1.1. Windows...22
 4.1.2. Linux...22

4.2. Downloading...22
4.3. Installing..22
4.4. Running...22

 4.4.1. Windows...22
 4.4.2. Linux...22

Chapter 5. Using the program..23
5.1. Graphical Interface..23

 5.1.1. Playing with the examples..23
 5.1.2. The Syntax ComboBox...23
 5.1.3. Writing your first sketch...24
 5.1.4. Exporting your sketch...24

 5.1.4.1. Executable...24
 5.1.4.2. Web...25

DotNetProcessing Documentation

i

Table of Contents
Chapter 5. Using the program

 5.1.4.3. .NET User Control..25
 5.1.4.3.1. Using an exported sketch in Microsoft Visual Studio.NET..................25
 5.1.4.3.2. Using an exported sketch in a .NET application (without Visual

 Studio)..26
 5.1.4.3.3. Going one step further (the full power of .NET on your hands)...........28

5.2. Command Line..31

Chapter 6. A Case Study...33

II. Developer Documentation...34

Chapter 7. Getting the sources...35
7.1. The easy way (download them)..35
7.2. The not so easy way (get them by cvs)...35

 7.2.1. Windows...35
 7.2.2. Linux...36

Chapter 8. Compiling..37
8.1. Windows..37

 8.1.1. Microsoft Visual Studio..37
 8.1.2. Command Line...37

8.2. Linux...37

Chapter 9. Architecture..38
9.1. DotNetProcessing building blocks..38
9.2. The Syntax...39
9.3. The Primitives...40
9.4. The Surface...41
9.5. Sketch Exportation..41
9.6. Execution Model...42

Chapter 10. Cross−platform issues..43

Chapter 11. Dotnetprocessing vs Processing..44
 11.1. Functional differences..44
 11.2. Performance test...44

Chapter 12. TODO's...54

Chapter 13. Implementation status...55

DotNetProcessing Documentation

ii

Table of Contents
Chapter 14. Writing documentation for DotNetProcessing with DocBook.....................................56

Chapter 15. Updating the DotNetProcessing web site...57

Chapter 16. Roadmap...58
 16.1. Mozilla Plugin for .NET User Controls...58
 16.2. Support for Java and Visual Basic.NET syntax under Linux..58
 16.3. Live Processing..58
 16.4. GTK# Environment..58
16.5. DotNetProcessing Arena...58
 16.6. Windows Vista...58
 16.7. DotNetProcessing for mobile devices..60

DotNetProcessing Documentation

iii

DotNetProcessing Documentation

Jonatan Rubio

Santi Serrano

Table of Contents
I. User Documentation

1. Introduction
2. The Processing Language

2.1. Processing origins
2.2. Process VS Timeline
2.3. Processing as an intermediate language
2.4. Related software

2.4.1. DBN
2.4.2. Logo
2.4.3. Flash
2.4.4. Director

2.5. Processing is Open Source
2.6. Digital art
2.7. Processing in the world
2.8. First steps

3. Why DotNetProcessing?
4. Installation

4.1. Prerequisites
4.1.1. Windows
4.1.2. Linux

4.2. Downloading
4.3. Installing
4.4. Running

4.4.1. Windows
4.4.2. Linux

5. Using the program
5.1. Graphical Interface

5.1.1. Playing with the examples
5.1.2. The Syntax ComboBox
5.1.3. Writing your first sketch
5.1.4. Exporting your sketch

5.2. Command Line
6. A Case Study

II. Developer Documentation
7. Getting the sources

7.1. The easy way (download them)
7.2. The not so easy way (get them by cvs)

7.2.1. Windows
7.2.2. Linux

8. Compiling

8.1. Windows
8.1.1. Microsoft Visual Studio
8.1.2. Command Line

8.2. Linux
9. Architecture

9.1. DotNetProcessing building blocks
9.2. The Syntax
9.3. The Primitives
9.4. The Surface
9.5. Sketch Exportation
9.6. Execution Model

10. Cross−platform issues
11. Dotnetprocessing vs Processing

11.1. Functional differences
11.2. Performance test

12. TODO's
13. Implementation status
14. Writing documentation for DotNetProcessing with DocBook
15. Updating the DotNetProcessing web site
16. Roadmap

16.1. Mozilla Plugin for .NET User Controls
16.2. Support for Java and Visual Basic.NET syntax under Linux
16.3. Live Processing
16.4. GTK# Environment
16.5. DotNetProcessing Arena
16.6. Windows Vista
16.7. DotNetProcessing for mobile devices

List of Tables
2−1. DBN example
2−2. DBN example
2−3. DBN example
2−4. Logo example
2−5. Logo example
2−6. Logo example
5−1. Sketch syntaxes and their associated file extensions
7−1. CVS Access
9−1. Execution model

List of Examples
5−1. VB.NET sketch
11−1. Modified code to show performance

I. User Documentation
Table of Contents
1. Introduction
2. The Processing Language

2.1. Processing origins
2.2. Process VS Timeline
2.3. Processing as an intermediate language
2.4. Related software

2.4.1. DBN
2.4.2. Logo
2.4.3. Flash

2.4.3.1. Bitmap VS Vectors
2.4.3.2. Animations

2.4.4. Director
2.5. Processing is Open Source
2.6. Digital art
2.7. Processing in the world
2.8. First steps

3. Why DotNetProcessing?
4. Installation

4.1. Prerequisites
4.1.1. Windows
4.1.2. Linux

4.2. Downloading
4.3. Installing
4.4. Running

4.4.1. Windows
4.4.2. Linux

5. Using the program
5.1. Graphical Interface

5.1.1. Playing with the examples
5.1.2. The Syntax ComboBox
5.1.3. Writing your first sketch
5.1.4. Exporting your sketch

5.1.4.1. Executable
5.1.4.2. Web
5.1.4.3. .NET User Control

5.2. Command Line
6. A Case Study

Chapter 1. Introduction
Processing is a simplified programming language used by artists, designers or students to create
images, animations and sounds. It was born in the Aesthetics and Computation group of the MIT and
its main purpose was to establish a bridge between artists and engineers. They though the best way of
using a computer as an expression element was talking to it in its own language. But programming
languages were too difficult. That's why they created Processing, a programming language so easy that
anyone could use it but at the same time so powerful it is possible to do almost everything with it.

DotNetProcessing started as a student final project in the Barcelona School of Informatics. Its mainly
goal is to construct an operative port of the original Processing language (which is based on Java) to
the Microsoft .NET framework, extending it with specific tools focused on this platform. This parallel
software includes intresting features related to .NET like multiple syntaxes, user control sketch
exportation or mono compatibility.

http://www.processing.org
http://acg.media.mit.edu/
http://web.mit.edu/
http://www.fib.upc.es
http://www.mono-project.com

Chapter 2. The Processing Language

2.1. Processing origins

Processing was born in the Aesthetics and Computation Group at MIT Media Laboratory led by John
Maeda. This group is formed by an hybrid mix of designers and engineers that explore computing and
aesthetics worlds, apparently very different, building bridges between them.

John Maeda always thought that the best way of using a computer as an expression element was
talking to it in its own language. But that implied for artists and designers to learn programming, and
that was something hard for what everybody was not prepared. It was necessary to build bridges
between this space that separated designers and technicians.

In 1999 John Maeda created Design by Numbers, a programming language with an easy syntax which
he used to teach. Design by numbers had something very interesting. Maeda's students could see in
every moment the graphical results of what they were programming. That reduced significantly the
learning curve because the human brain has innate capacity for spacial recognition.

But Design by numbers was very limited so three years later, Casey Reas and Ben Fry, two students of
Maeda, initiated Processing, a language to create graphics so easy as Design by Numbers but at the
same time so powerful as any general purpose programming language.

Aesthetics and Computation Group Web at MIT

2.2. Process VS Timeline

If we look at the software that designers use, we can see that most of them use a format in which there
is a timeline and the final result is conceived as a movie. Processing, as its name suggests, is based on
process definition, a very different perspective focused on the process of creation, not necessary on the
final result. In fact, computers are machines that process and combine low level symbols to create high
level representations.

This idea is related to the fact that Processing gives the artists complete freedom to do exactly what
they imagine. Something that doesn't occur with tools based on countless presets where usually you
don't have pixel level precision.

Typical Macromedia Flash Timeline

2.3. Processing as an intermediate language

In the beginning, the idea was not that people stuck on Processing. It only hoped to near the world of
programming to artists. In some cases it has become this way. Processing is used by artists to create
prototypes because of its easiness. Later, they decide how to build their definitive work. In other cases
Processing has been used as part of a more complex project as happened with the videoclip made by
the REM music group where the part of following particles in movement was made with Processing.

2.4. Related software

2.4.1. DBN

DBN (Design By Numbers) is a programming language created by John Maeda used as an introduction
to computational design. The user can see in every moment the graphical results of what they are
programming, reducing significantly the learning curve because the human brain has innate capacity
for spacial recognition. Programming was something too boring for artists but with DBN was like

playing.

DBN is also a development environment where it is possible to code and execute programs in the
context of drawing. Visual elements like points and lines are combined along with programming
concepts to create images.

DBN is a not general purpose programming language like C or Java. It was created for people to make
their first steps in digital art. It's free, multiplatform, easy, and you can even export your creations to
the web.

We can say that Processing is the evolution of Design by Numbers.

The number of commands available in DBN is very limited because it was created mainly for teaching.
Thus, it's not very powerful but very easy. Every command has a numeric attribute normally between 0
and 100.

For example, if we execute Paper 50 we obtain a grey canvas (50% black). With Pen 0 we obtain a
white pen. Lines are created with commands like Line 0 0 100 100 meaning we are drawing a line
from point (0,0) to point (100,100).

Let's see a simple example using those three commands:

Table 2−1. DBN example

Example Result

Paper 0
Pen 100
Line 0 0 100 100

We can combine lines to create forms:

Table 2−2. DBN example

Example Result

Paper 0
Pen 100
Line 10 10 10 90
Line 10 90 90 90
Line 90 90 90 10
Line 90 10 10 10

In this example we create a gradient with a simple loop:

Table 2−3. DBN example

Example Result

Paper 0
Pen 100
Repeat A 0 100
{
 Pen A
 Line A 0 A 100
}

2.4.2. Logo

Logo is a programming language designed as a tool for teaching. It was created in 1967 and was based
on LISP. Its intellectual roots are in artificial intelligence. The idea of logo is that a turtle with a pen
can be instructed to do simple things like move forward 100 spaces or turn around. From these
building blocks you can create more complex shapes like squares, triangles or circles.

The language is very intuitive being very easy to learn. A student could understand (and predict and
reason about) the turtle's motion by imagining what they would do if they were the turtle. That made
the language ideal for teaching computing concepts. At the same time, experimented users can make
complex projects.

The turtle itself can be replaced with other shapes like birds, cars, airplanes or anything else. That
makes possible even to create simple games.

Let's see how we can draw a square with Logo:

Table 2−4. Logo example

Example Result

forward 50
right 90
forward 50
right 90
forward 50
right 90
forward 50
right 90

In the example above there's a pattern that's being repeated. We could replace it with a simple loop:

Table 2−5. Logo example

Example Result

repeat 4 [forward 50 right 90]

The square itself can be used to create other compositions:

Table 2−6. Logo example

Example Result

repeat 12 [square right 30]

With a little more work it's possible to create things like this:

2.4.3. Flash

Macromedia Flash is a tool for creating 2D animations. It supports interesting features like vector
graphics, a scripting language called ActionScript, bidirectional streaming of audio and video,
compression and interaction possibilities. Its user interface is very easy and will be familiar with
everyone that have worked with vector graphics since it uses concepts that are on other popular
commercial tools like Freehand, Illustrator or Corel Draw. The inclusion of sound is another feature of
Flash. It supports many formats including the possibility to reproduce audio files even before they
have been downloaded using buffers. Sounds can be synchronized with special effects and events.

Flash has become very popular for creating rich elements on web pages. Almost every internet browser
today has installed the corresponding plugin that reproduces ".SWF" files (the file format for Flash
animations). This popularity has been also criticized because most web pages have abused of Flash
animations substituting traditional elements of navigation and presenting information by non−standard
Flash animations. Once again, the tool is not the problem but the use people made of it. In this way,
Flash is not convenient for developing an entire web page but is ideal for creating visual design
elements or games. Flash was not specifically created for the web and it can run in many other
platforms like telephones or PDAs.

2.4.3.1. Bitmap VS Vectors

Bitmap Graphics create images with pixels, a color inside a cell. For example, this leaf has an
associated color for every pixel on the image creating an image very similar to a mosaic. This has the
problem that since we have no information about the shapes that form the image, it is impossible to
make changes like resizing the image without loosing quality.

Bitmap Graphics

However, when we work with vector graphics, it is possible to resize, move or change colors of an
image without loosing the quality of the original image. Vector graphics are resolution independent
and can be displayed in a variety of mediums without loosing quality.

Vector Graphics

In this example, the image of the leaf is created with points and lines going from point to point
defining the leaf outline. Both the outline and the inside of the leaf have their associated color.

2.4.3.2. Animations

Animations are created inserting objects in a timeline working with different layers. This way, it is
possible to create complex animations easy and fast. To get better results we can apply many effects
like deformation or contrast. Object can even point to an URL when some action occur.

Macromedia Flash Environment

2.4.4. Director

Macromedia Director is a tool for creating multimedia applications. It is possible to combine images,
sounds, text or video in one unique file which can be exported to many formats including AVI and
Shockwave. It is not a program for creating contents but for integrating them. The user acts as the
Director of a movie.

The environment is similar to Flash, elements are combined in a timeline. The program includes
support for visual effects, vector graphics, Lingo scripting and many more. Those features are kept in
groups called media assets.

2.5. Processing is Open Source

Processing has contributed to the free software community and specifically to digital art building a free
tool whose source code is available through the Processing Developer page.

In this world where commercial tools from companies like Adobe or Macromedia are on the spot,
Processing has made his own space offering an close alternative to digital art. That was from the
beginning since Processing was born in an educational context targeting a wide group of people.

Anybody can download a free copy of Processing and start working immediately in an easy
environment not full of countless options that saturate users. Furthermore, the Processing community
grows day by day and it's possible to access the source code of the majority of sketches that are on the
net, stimulating exchange and learning. That's the spirit of Processing.

Another important thing is that Processing has versions available for Windows, Mac and Linux
operating systems. That's because it's based on Java, a free multiplatform developing software.

Processing is already on the Creative Commons trend. A project initiated three years ago offering
artists and creators simple licenses that lets them distribute and share their works with full legal
security. No need to choose between Public Domain (no rights reserved) / Copyright (all rights
reserved) any more. Now it's possible to explicit if a work can be copied, distributed, changed or even
used commercially. Creative commons introduce the concept of "some rights reserved".

http://dev.processing.org/

Processing code available to download by CVS

Creative Commons License

No Rights Reserved

Some Rights Reserved

2.6. Digital art

Digital art is art created on a computer in digital form. Digital art can be purely computer−generated or
taken from another source, such as a scanned photograph. Processing is in fact a software for creating
art with a computer. In this area there are other interesting disciplines:

Demoscene
The demoscene is a computer subculture that appear in the late 1970s and early 1980s. Initially
they were impressive−looking graphical animations used by hackers as a symbol. Lately they
become a way of generating complex 3D graphics usually programmed in low level assembly
language. That was because by the time demos appeared, computers where not powerful
enough to process such complexity from a high level programming language.

Some captures from Second Reality by Future Crew. Winner of Assembly'93 PC demo
competition.

Fractals
Fractals are shapes that are recursively constructed or self−similar. Fractals are used in may
disciplines like medicine, music, cosmology and computer graphics where mathematical
functions generate still images, animations and even music.

Fractal example

ASCII art
ASCII art consists of pictures created with any text editor using characters defined by ASCII.
Originally they were used when early printers lacked graphics ability. Probably the simplest
form of ASCII art are the well−known smilies, combinations of two or three characters for
expressing emotion in text.

ASCII Art image

Rendering
Rendering is the process of generating an image from a model, by means of a software
program. The model is a description of three dimensional objects in a strictly defined language
or data structure. It would contain geometry, viewpoint, texture and lighting information. It has
uses in computer and video games, simulators, movies or TV special effects.

Raytracing
Ray tracing is a general technique from geometrical optics of modelling the path taken by light
by following rays of light as they interact with optical surfaces. The term is applied to mean a
specific rendering algorithmic approach in 3D computer graphics, where
mathematically−modelled visualizations of programmed scenes are produced using a
technique which follows rays from the eyepoint outward, rather than originating at the light
sources.

Photo−realistic image made with the PovRay software.

Video games
Video games are computer games where a video display such as a monitor or television is the
primary feedback device. The social and artistic importance of video games has recently been
officially acknowledged by The British Academy of Film and Television Arts elevating the
sector to become an equal to those for Film and Television.

2.7. Processing in the world

At the moment, Processing is used mainly for teaching because of its easiness. Important universities
such as Washington, Virginia, Copenhagen, Londres, Berlin, New York or Roma use them, as well as
in many art schools.

http://www.stephnet.org/430/schedule.html
http://www.artnode.org/art/jacobsen/undervisning/hum3/
http://www.shiffman.net/teaching/the-nature-of-code/

For example, in the Chicago School of the Art Institute, the department of art and technology uses
Processing in one of its courses, along with Director in order to juxtapose traditional practices of
analog drawing with the process of sketching in code.

Programming for automatic drawing systems

At uvanewmedia, a virtual gallery, resource toolkit, and collaborative meeting space for new media
artists of all disciplines at the University of Virginia, they use Processing for teaching algorithmic
graphics, and interactive java applets.

http://www.tiffanyholmes.com/Teaching/PADrawing/
http://www.uvanewmedia.com

UvaNewMedia

In the Processing page there is a also a very active forum where it is discussed many things related
with the language: announcing events, tools, syntax, libraries, bugs and many others.

The Processing Forum

2.8. First steps

[...]

Chapter 3. Why DotNetProcessing?
Although DotNetProcessing is far from getting the maturity of the original Processing software there
are a few exclusive features to take into account:

You can write sketches in different syntaxes. Not only Java.•
Integrate your sketches in your own .NET applications thanks to the .NET User Control
Export option.

•

The DotNetProcessing binaries not counting the Microsoft .NET Framework have a size less
than 200 Kb.

•

.NET is fast multi−platform technology.•
More to come.•

Chapter 4. Installation

4.1. Prerequisites

In order to run the program your system has to be capable of running .NET applications. Make sure
one of the following is installed on your system:

4.1.1. Windows

You can choose:

Microsoft .NET Framework (recommended)•
Mono for Windows•

4.1.2. Linux

Get the Mono platform:

Mono for Linux•

4.2. Downloading

The program can be downloaded in the DotNetProcessing download page. Get the OS Independent
Binaries.

4.3. Installing

Just unzip the downloaded file to some place in your hard disk.

4.4. Running

4.4.1. Windows

Double click on the DotNetProcessing.exe executable file.

4.4.2. Linux

Use the following command to run the program:

mono DotNetProcessing.exe

At the time of writing this documentation the DotNetProcessing graphical environment
is very unstable under Linux. For better results use the command line.

http://msdn.microsoft.com/netframework/
http://www.mono-project.com/Downloads
http://www.mono-project.com/Downloads
http://dnetprocessing.sourceforge.net/download.html

Chapter 5. Using the program

5.1. Graphical Interface

5.1.1. Playing with the examples

One of the first things you can do when entering the program is load some of the examples that comes
with it. They are on the File menu under the Examples submenu. Note that the source code of the
examples shows in the center of the window. Now push the Build and Run button and the resulting
sketch will appear.

5.1.2. The Syntax ComboBox

One of the key features of .NET technology is the possibility of writing code in various different
programming languages. This is because only syntax change between them. The underlying .NET
class library is the same for all. It was a natural thing to have Processing sketches written in different
.NET languages.

In the upper part of the environment window there is a combobox which lets you choose the syntax of
your sketch. At the time of writing this documentation there are four possibilities:

J#
This is the most compatible syntax with the original Processing language since it is based on
Java. Under Windows, if you don't have the J# Redistributable Package installed in your
system you won't see this option. Under Linux you won't see this option.

C#
For sketches written in C#. Note that although Java and C# have similar syntax they are not
exactly equal and many sketches written for the original Processing language won't compile
under this option.

VB.NET
For sketches written in VB.NET.

Java Emulation
This option tries to emulate Java syntax parsing your sketch and changing those parts that are
not C# compatible since the compiler internally used is C#. This is specially appropriate to try
Java syntax sketches without installing the J# Redistributable Package. Note that at the time of
writing this documentation this option is in a very early stage.

Every syntax has an associated file extension which the program uses to detect in which syntax the
sketch you are loading is written. Java and J# sketches have the same extension as the original
Processing language: ".pde". C# sketches have the ".cs.pde" extension. VB.NET sketches have the
".vb.pde" extension.

Table 5−1. Sketch syntaxes and their associated file extensions

Syntax File Extension

Java/J# .pde

http://msdn.microsoft.com/vjsharp/downloads/howtoget/default.aspx

C# .cs.pde

Visual Basic.NET.vb.pde

Java Emulation .pde

Example 5−1. VB.NET sketch

Dim x1 As Integer
Dim y1 As Integer
Dim x2 As Integer
Dim y2 As Integer

Sub setup()
 size(400,400)
 x1 = 1
 y1 = 1
 x2 = 400
 y2 = 400
End Sub

Sub draw()
 If (x2>0) then
 rect(x1,y1,x2,y2)
 x1=x1+1
 y1=y1+1
 x2=x2−2
 y2=y2−2
 End If
End Sub

5.1.3. Writing your first sketch

If you are new to the Processing language take some time navigating through the original Processing
language home page:

processing.org•
The complete functions reference•
First steps•

Once you are familiar with the Processing language you can load one of the examples and make little
changes to see how they affect the resulting sketch.

5.1.4. Exporting your sketch

5.1.4.1. Executable

Just what it says. Export to executable and you'll have a ".exe" file containing your sketch. In
Windows double click to show it. Linux users type mono sketchname.exe (substitute sketchname with
the name of your sketch).

http://www.processing.org/
http://www.processing.org/reference/index.html
http://www.processing.org/reference/environment/index.html

At the time of writing this documentation the program has the limitation that if your sketch is
written in J# or VB.NET some DLLs will be generated with your executable. Just keep all them
together for proper functioning.

5.1.4.2. Web

When you choose this option the program will generate an HTML and one or more DLL files. If you
drop all them to a web server, visitors will be able to see the sketch if they have Internet Explorer and
the .NET Framework installed. Linux users won't be able to see the sketch.

At the time of writing this documentation the program has the limitation that if your sketch is
written in J# or VB.NET you'll have to host the exported sketch in an IIS Server because the
generated files include more than one DLLs and only IIS Servers will send all of them to the
client.

5.1.4.3. .NET User Control

This is quite an interesting feature. When you export a sketch to executable or to web the result is
something closed. You can't do anything with it apart from sending it to someone or displaying it in a
web page. But it would be nice to use your sketch along with something else, for example, a .NET
application. That's exactly what this option is about. The program will generate one or more DLL files
containing your sketch as a .NET User Control. .NET User Controls are graphical OOP classes. In
other words, is what you see in a typical windows form: buttons, menus, check boxes, grids, tabs, etc.
Your sketch will be another one.

5.1.4.3.1. Using an exported sketch in Microsoft Visual Studio.NET

We are going to see the whole process of how you can integrate your sketch in a .NET application
developed with Microsoft Visual Studio.NET.

Export your sketch to some folder on your system1.
Open Visual Studio2.
Create a new windows application project3.
Go to the toolbox − My User Controls4.
Right mouse click − Add/Remove Items5.
Under the .NET Framework Components tab browse to the generated DLL that contains your
sketch. If you see more than one take the one that has the name you gave to the sketch.

6.

Press the OK button and your sketch will be now on the toolbox7.
Drag the sketch to a form8.
Drag two buttons to the form9.
Call the sketch start method in the first button mouseclick event:
sketchname1.Start(); // C# − substitute sketchname with the name of your sketch

10.

Call the sketch stop method in the second button mouseclick event:
sketchname1.Stop(); // C# − substitute sketchname with the name of your sketch

11.

Run the program12.

Add user control to the toolbox

5.1.4.3.2. Using an exported sketch in a .NET application (without Visual Studio)

Now let's suppose we don't have Visual Studio and we have to hard code our application with a simple
editor and build it with the command line. The example
EmbeededIterationModified.cs.pde will be used. Substitute everywhere with the name of
your sketch.

Export your sketch to some folder on your system1.
In this folder create a file called EmbeddedIterationModified.cs with the following
code:
using System;
using System.Drawing;
using System.Collections;
using System.ComponentModel;
using System.Windows.Forms;
using System.Data;

namespace EmbeddedIterationModifiedNameSpace
{
 public class EmbeddedIterationModifiedForm : System.Windows.Forms.Form
 {

2.

private DotNetProcessing.Running.EmbeddedIterationModified
 EmbeddedIterationModifiedSketch;
 private System.Windows.Forms.Button startButton;
 private System.Windows.Forms.Button stopButton;

 private System.ComponentModel.Container components = null;

 public EmbeddedIterationModifiedForm()
 {
 InitializeComponent();
 }

 protected override void Dispose(bool disposing)
 {
 if(disposing)
 {
 if (components != null)
 {
 components.Dispose();
 }
 }
 base.Dispose(disposing);
 }

 private void InitializeComponent()
 {

this.EmbeddedIterationModifiedSketch =
 new DotNetProcessing.Running.EmbeddedIterationModified();
 this.startButton = new System.Windows.Forms.Button();
 this.stopButton = new System.Windows.Forms.Button();
 this.SuspendLayout();

 this.startButton.Location = new System.Drawing.Point(5, 210);
 this.startButton.Name = "startButton";
 this.startButton.TabIndex = 0;
 this.startButton.Text = "Start";
 this.startButton.Click += new System.EventHandler(this.startButton_Click);

 this.stopButton.Location = new System.Drawing.Point(120, 210);
 this.stopButton.Name = "stopButton";
 this.stopButton.TabIndex = 0;
 this.stopButton.Text = "Stop";
 this.stopButton.Click += new System.EventHandler(this.stopButton_Click);

 this.AutoScaleBaseSize = new System.Drawing.Size(5, 13);
 this.ClientSize = new System.Drawing.Size(200, 240);
 this.Controls.Add(this.startButton);
 this.Controls.Add(this.stopButton);

this.Controls.Add(this.EmbeddedIterationModifiedSketch);
 this.Name = "EmbeddedIterationModifiedForm";
 this.Text = "EmbeddedIterationModified";
 this.ResumeLayout(false);

this.EmbeddedIterationModifiedSketch.Location = new System.Drawing.Point(0, 0);
 this.EmbeddedIterationModifiedSketch.Name = "EmbeddedIterationModifiedSketch";
 this.EmbeddedIterationModifiedSketch.Size = new System.Drawing.Size(200, 200);
 this.EmbeddedIterationModifiedSketch.TabIndex = 0;
 }

 [STAThread]
 static void Main()

 {
 Application.Run(new EmbeddedIterationModifiedForm());
 }

 private void startButton_Click(object sender, System.EventArgs e)
 {
 this.EmbeddedIterationModifiedSketch.Start();
 }

 private void stopButton_Click(object sender, System.EventArgs e)
 {
 this.EmbeddedIterationModifiedSketch.Stop();
 }
 }
}

Build the code with the following command line:

csc −target:winexe −out:EmbeddedIterationModified.exe
−r:EmbeddedIterationModifiedSketch.dll EmbeddedIterationModified.cs

3.

Run the generated executable file

.NET User Control Sketch in your application

4.

5.1.4.3.3. Going one step further (the full power of .NET on your hands)

Ok. You've exported your sketch to Visual Studio and have two cute methods: Start and Stop. But,
what if you want more? There are a few tricks that will let you define your sketches specifally for
being used from another .NET application. Basically thanks to Properties and Events. Take a sit.

Properties
Properties are variables that you don't access directly. They have two special methods called
get and set specially designed to perform addional processing before reading or setting its
value. If you want to see your variables in Visual Studio Property Inspector you have to
encapsulate them using properties.

Events

Once you've designed events for your sketch you will be able to subscribe to them in your
.NET aplication and therefore be advised when something happens on your sketch.

Let's go for an example. We are going to take the Collision example. It's like a ping−pong game where
you have to push a ball with a paddle. So how can we interact with this sketch? Imagine we want to
have a variable paddle size. That means you are going to have the possibility of changing the paddle
size even after the sketch has been exported. We can even do something everytime the ball touches the
paddle. Follow this steps:

Open the "Collision.cs.pde" example.1.
Insert the following lines before the beginning of the sketch:
public int PaddleHeight
{
 get
 {
 return paddle_height;
 }
 set
 {
 paddle_height = value;
 }
}

Those lines convert the paddle_height variable in a property with its get and set method. The
resulting property name is PaddleHeight and is what you will see in Visual Studio Propery
Inspector.

2.

Insert the following lines after the property definition:
public delegate void PaddleTouchDelegate();
public event PaddleTouchDelegate PaddleTouch;

private void FireAwayPaddleTouch()
{
 if (PaddleTouch != null) PaddleTouch();
}

That's a little more tricky. The first line is declaring a delegate called PaddleTouchDelegate.
The second line is declaring an event of type PaddleTouchDelegate. And then there is the
method which you will call inside your sketch to fire the event in case somebody is subscribed
to it.

3.

We are missing something yet. As we said before, the event has to be fired when the ball
touches the paddle. Locate the following code and insert the line in bold:
 // Test to see if the ball is touching the paddle
 float py = width−dist_wall−paddle_width−ball_size;
 if(ball_x == py
 && ball_y > paddle_y − paddle_height − ball_size
 && ball_y < paddle_y + paddle_height + ball_size) {
 ball_dir *= −1;
 if(mouseY != pmouseY) {
 dy = (mouseY−pmouseY)/2.0;
 if(dy > 5) { dy = 5; }
 if(dy < −5) { dy = −5; }
 }

4.

FireAwayPaddleTouch();
 }

That's it. Our sketch is ready to be exported.
Export your sketch to somewhere on your system. Call it MyCollision5.
Create a new Visual studio project of type Windows Application and C# Syntax6.
Add the exported sketch to the toolbox and drop one instance to the form.7.
Now look at the property inspector and search for the PaddleHeight property. Change its value
to 30.

8.

Again in the property inspector open the events list and search for the PaddleTouch event.
Double click and type the following:
MessageBox.Show("Good!!");

9.

Drop a button to the form and type the following in the click event:
myCollision1.Start();

10.

Execute the program. You'll see a bigger paddle and a congratulations message everytime you
hit the paddle.

11.

You don't need to create properties to access your variables from a .NET application. Prefix
the public keyword before them in your sketch code and they will be accessible outside the
sketch. Only they won't appear in the property inspector.

Have you noticed you can even call DotNetProcessing primitives from your application?

Events in your sketch.

5.2. Command Line

There is a special executable file called dnp.exe which lets you build, show and export sketches
from the command line. Under Linux remember to use the mono dnp.exe command. This is the help
information you will get when executing the program without parameters:

DotNetProcessing

 Usage:

 dnp.exe example.pde [syntax] [−e:export_type]

 possible values for syntax:

 jcsharp: Java Emulation (default for .pde)
 csharp : C# (default for .cs.pde)
 jsharp : J#

 vb : VB.NET (default for .vb.pde)

 possible values for export_type:

 0: executable
 1: web
 2: .net user control

 * When exporting, the destination files are put in a directory
 with the same name as the file name that contains the code

Chapter 6. A Case Study
[...]

II. Developer Documentation
Table of Contents
7. Getting the sources

7.1. The easy way (download them)
7.2. The not so easy way (get them by cvs)

7.2.1. Windows
7.2.2. Linux

8. Compiling
8.1. Windows

8.1.1. Microsoft Visual Studio
8.1.2. Command Line

8.2. Linux
9. Architecture

9.1. DotNetProcessing building blocks
9.2. The Syntax
9.3. The Primitives
9.4. The Surface
9.5. Sketch Exportation
9.6. Execution Model

10. Cross−platform issues
11. Dotnetprocessing vs Processing

11.1. Functional differences
11.2. Performance test

12. TODO's
13. Implementation status
14. Writing documentation for DotNetProcessing with DocBook
15. Updating the DotNetProcessing web site
16. Roadmap

16.1. Mozilla Plugin for .NET User Controls
16.2. Support for Java and Visual Basic.NET syntax under Linux
16.3. Live Processing
16.4. GTK# Environment
16.5. DotNetProcessing Arena
16.6. Windows Vista
16.7. DotNetProcessing for mobile devices

Chapter 7. Getting the sources

7.1. The easy way (download them)

Get them in the DotNetProcessing download page.

7.2. The not so easy way (get them by cvs)

DotNetProcessing sources are hosted in Sourceforge CVS servers. CVS is a tool used by many
software developers to manage changes within their source code. That means many developers can
work concurrently on the source code having the most up to date changes at any time. When one
developer tries to update some changes on a file that previously has been modified by another
developer, the cvs server alerts of this situations and the developer has to revise both changes and send
a working version to the cvs server.

The best way to understand what all this is about is read some CVS information on the Sourceforge
page:

DotNetProcessing Sourceforge CVS information•
Sourceforge CVS general information•
Sourceforge CVS software recommendations•
Sourceforge CVS windows access with Tortoise CVS•

There are basically two access modes to the sources (anonymous and authenticated). The difference is
that authenticated access permits uploading changes to the cvs server. To be an authenticated user you
have to create a Sourceforge account and ask for appropriate privileges to the DotNetProcessing
administrators.

7.2.1. Windows

For quick access to the DotNetProcessing sources with Tortoise CVS follow these steps:

Download and install Tortoise CVS1.
Create an empty folder anywhere on your system2.
Right mouse click on this folder3.
Choose the CVS Checkout option on the menu4.
Configure the options either for anonymous or authenticated access:

Table 7−1. CVS Access

Anonymous Authenticated

Protocol Password server (:pserver:) Secure Shell (:ssh:)

Server dnetprocessing.cvs.sourceforge.netdnetprocessing.cvs.sourceforge.net

Repository folder /cvsroot/dnetprocessing /cvsroot/dnetprocessing

Username anonymous your sourceforge username

Module . .

5.

http://dnetprocessing.sourceforge.net/download.html
http://www.sourceforge.net
http://sourceforge.net/cvs/?group_id=143704
http://sourceforge.net/docs/E04/
http://sourceforge.net/docs/B01/#cvs_client
http://sourceforge.net/docs/F04/en/#top
http://www.tortoisecvs.org/

Press the OK button6.

Getting the sources with Tortoise CheckOut CVS anonymous access

7.2.2. Linux

[...]

Chapter 8. Compiling

8.1. Windows

8.1.1. Microsoft Visual Studio

Open the DotNetProcessing Solution filename: DotNetProcessing.sln. Visual Studio will open
all associated projects with the solution. Compile as usual.

8.1.2. Command Line

Use one of the following commands to compile the sources:

build_csc: For compiling with the Microsoft .NET Framework C# compiler

build_mcs: For compiling with the Mono C# compiler

If you have problems check that the PATH System Variable is properly set up.

8.2. Linux

Use the following command to compile the sources:

sh build.sh

Chapter 9. Architecture

9.1. DotNetProcessing building blocks

DotNetProcessing is formed of various modules, each one with its own purpose:

DotNetProcessing.Environment
This is the graphical user interface for DotNetProcessing. It contains a textbox for writing the
sketch, a combobox for setting the syntax and other operations included in the menus. When
the user compiles or exports the sketch, control is passed to the Parsing module.

DotNetProcessing.EnvironmentConsole
This is the equivalent console application to the graphical version of the Environment. Its
functionalities are exposed through command line parameters.

DotNetProcessing.Parsing
In the Parsing module the user sketch code is embedded in the Running module and the
resulting code is compiled with the corresponding .NET compiler instance depending on the
associated syntax.

DotNetProcessing.Canvas
The Canvas is only a simple Windows Form that holds the UserControl sketch generated in the
Running module. It's the main entry point of the executable file resulting of exporting the
sketch to executable.

DotNetProcessing.Running
This module inherits from AbstractRunning and has one different version for each possible
syntax accepted by the program. This is its main purpuse and thus the code inside it is very
short. The parsing module embeds the user sketch code here and compiles it with the
appropiate compiler instance. This module corresponds to the resulting dll when exporting to
.net user control.

DotNetProcessing.AbstractRunning
This module inherits from the Kernel and has the main loop of the program. The one that calls
repeatedly to the user draw method and paints through the primitives called in the Kernel
module.

DotNetProcessing.Kernel
The kernel module is a class that inherits from System.Windows.Forms.UserControl and
implements all the Processing primitives using GDI+. Those primitives paint to the
UserControl surface.

DotNetProcessing.Common
This module is used by all other modules. It contains constant definitions, events, exceptions
and other stuff not related with any specific module.

DotNetProcessing Modules

9.2. The Syntax

When we had the idea of porting the Processing language to the .NET platform one of the first things
that came to our minds was "That's about compilers". In fact we needed to do something with code
written in a specified language by the final user. So we began to write a grammar for the Processing
language in a free YACC−like C# based tool called Grammatica. But soon we saw that was a lot of
work.

Fortunately, after doing a little research in the source code of the original Processing software we saw
the approach followed was very different. The idea was to embed the sketch source code in a java class
and compile the result with the java compiler. This has some disadvantages, mostly related with not
having fine−grained control of the process in which the sketch is executed. But it has one big
advantage, the dirty work is done by the underlying compiler (Java Virtual Machine in case of
Processing and .NET in case of DotNetProcessing). That permitted developing a working solution in a
very short period of time.

This approach had indirectly another advantage. By relaying on the underlaying compiler for the
sketch compiling process we can write sketches in different .NET supported syntaxes. A different
compiler instance is used for every different syntax supported.

http://grammatica.percederberg.net/

Sketch source code is embedded in the Runner class (C#)

Sketch source code is embedded in the Runner class (VB.NET)

9.3. The Primitives

Another important thing to address was how to implement the Processing primitives. We initially
though of three possibilities (GDI+, DirectX and OpenGL). After some research through them we saw
GDI+ had two big advantages. The first one is that GDI+ is included in the .NET framework. The
second advantage is that many Processing primitives has an equivalent in GDI+. GDI+ does not have
the power of more complex graphics libraries but is enough to implement the basic primitives. In the

future, DirectX can be used to implement 3D as the original Processing language does with OpenGL.

9.4. The Surface

We needed a place to paint to. In GDI+ all painting is done to a Graphics object. The user control,
which is in fact a form because it inherits from it, has an associated Graphics object that can be
repainted in the OnPaint event. One of the problems we had to face was that changes in the graphics
object are not permanent. This means that we needed a way of tracking all the changes that were
applied to the surface in every loop. The solution we followed consisted in mantaining a Bitmap object
with the surface content. Then in the OnPaint event this content is dropped to the user control graphics
object through the DrawImage method.

9.5. Sketch Exportation

The way in that DotNetProcessing modules are designed makes very easy the process of exporting the
sketch to one of its three options (executable, web and user control). When the user builds a sketch,
internally, in the Parsing module the program generates a .NET user control containing the sketch.
After this, exporting the sketch to .NET user control is as easy as copying the resulting dll to a
specified folder. In case of web, the same dll is deployed along with an html file that uses it. Then both
files have to be hosted in a web server to complete the process. In case of executable the Canvas
module (which resulting type is of executable) is deployed. But in fact, it is just a container of the
.NET user control. It is also the file that is executed when the user runs the sketch in the Environment.

Export to .NET User Control

Export to Executable

9.6. Execution Model

In this section we present in a chronological way the main tasks that occur when a sketch is compiled
and executed:

Table 9−1. Execution model

Compilation

Environment The user writes the sketch and clicks on the Build and Run button

Parsing

The size primitive is located in the sketch code and once the sketch size
is known it is transferred to the Kernel and the Canvas module setting
the user control and the form dimensions according to the sketch size.
Also the html used for exporting the sketch to web is modified for
setting the sketch size.

Some modifications are made to the sketch code before compiling it:

In those pair primitives that have the same name but with
different behavior (one as variable and one as function), one of
them is changed because as this is permitted in syntaxes like
Java it is not permitted in others like C#. Examples of this are
framerate, keyPressed and mousePressed.

•

User functions related with keyboard and mouse events like
keyReleased or mouseDragged are prefixed with syntax
specific keywords. For example, in case of C#, void is replaced
by public override void.

•

Source sketch code is embedded in the Running module

The main classes are substituted with the sketch name so that when the
user exports the sketch to .NET user control it is personalized. This is
done in the Running and Canvas modules which correspond to the
.NET user control and the executable.

Kernel, AbstractRunning, Running, Canvas and Common modules are
compiled generating the resulting sketch

Execution

Canvas The sketch is executed

AbstractRunning

The setup sketch method is processed

We enter the main loop doing the following tasks:

Process the draw sketch method where all the painting is done
though the Kernel module

•

Handle frame rate and sleep the process the corresponding time•
Save mouse position for handling pmouseX and pmouseY
primitives

•

Chapter 10. Cross−platform issues
Since DotNetProcessing can run both in Windows and Linux there are a few things you have to be
specially carefull when writting code:

Only write managed .NET code. That means, only use those classes included in the .NET class
library. If you call to special Windows API functions you are writting unmanaged code which
won't work under Linux.

•

Use the System.IO.Path.DirectorySeparatorChar special variable when
accessing the file system using paths.

•

Don't make things like launching Internet Explorer.•
Try the program under both platforms periodically. It will help detecting possible problems.•

At the time of writing this documentation the DotNetProcessing Environment, although very
unstable, works under some Linux distributions. That's why we've make a very simple graphical
interface without icons and other rich elements. More elements can be added as Mono Winforms
evolve.

http://www.mono-project.com/WinForms

Chapter 11. Dotnetprocessing vs Processing

11.1. Functional differences

Dotnetprocessing is a port of the original language. But as they are implemented with different
languages and in a different way, they have different features:

The original language needs the Java Virtual Machine (JVM) installed in the client computer
to running sketches, so that it was coded in Java. It makes it so much portable.
Dotnetprocessing only can be executed in computers with .NET Framework or Mono, because
it's implementated with .NET technology. That's why it's less portable than the original.

•

Processing sketches can only be coded in Java language, while dotnetprocessing allows
programming in some .NET languages: C#, J# and Visual Basic. This is one of the advantages
of using our language: it's is more flexible and can be used by more programmers.

•

Processing is a multiplatform language and it can be displayed in almost all operating systems
with graphical environment. It has this feature because it uses the JVM. As we had explained
in the first paragraph, our language depends on .NET Framework and it makes it less
multiplatform than the original.

•

Actually, dotnetprocessing only works with Intenet Explorer, while Processing can be
executed at least with Explorer and Mozilla browsers. It's because of Mozilla doesn't have yet
a plugin for execute our code.

•

Our sketches can be exported to web controls, to DLL's (for use in all .NET applications) and
to autoexecutable programs. The original language can export only web controls. This is one
extra feature in favour of our port.

•

Dotnetprocessing makes possible interactions between two or more sketches. We can
implement a project using some sketches and catch events of one of them to make an action in
other one. That functionality isn't present in the original environment.

•

Processing is an older language and it's more developed than dotnetprocessing. It has more
extra features like 3D graphics or sounds. It has a lot of libraries that can expand his features
and makes it very powerful and easy to use. It has a great community that supports it. Our
language is only a part of it, and it isn't yet so extended, but it's a good beginning of its
alternative.

•

Interactuate between sketches...•

11.2. Performance test

One of the more important test of our project is to evaluate the performance of the two platforms. As
dotnetprocessing uses the .NET Framework, that is embedded in the operating system and we don't
need to run the Java Virtual Machine, it should be more efficient and faster. Next, we will show that
we were right. To make these tests, we show in the sketch the average framerate and the average
miliseconds that take long a loop. For these calculations, we use millis() primitive and framerate
environment variable.

In the code of one of the examples, you can see how we do this calculations:

Example 11−1. Modified code to show performance

// Sine_Cosine
// by REAS

// Linear movement with sin() and cos().
// Numbers between 0 and PI*2 (TWO_PI which is roughly 6.28)
// are put into these functions and numbers between −1 and 1 are
// returned. These values are then scaled to produce larger movements.

// Updated 21 August 2002

int i = 45;
int j = 225;
float pos1 = 0;
float pos2 = 0;
float pos3 = 0;
float pos4 = 0;
int sc = 40;
int radio_bola = 100;

// PERFORMANCE −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
double mediams = 0;
double mediafr = 0;
int ii = 0;

void setup()
{
 size(500, 500);
 noStroke();
 smooth();

// PERFORMANCE −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
// framerate(60);
PFont font;
font = createFont("Tahoma",8);
textFont(font, 12);
}

void draw()
{
 background(0);

 fill(51);
 rect(150, 150, 200, 200);

 fill(153);
 ellipse(pos1, 75, radio_bola , radio_bola);

 fill(255);
 ellipse(75, pos2, radio_bola , radio_bola);

 fill(153);
 ellipse(pos3, 425, radio_bola , radio_bola);

 fill(255);
 ellipse(425, pos4, radio_bola , radio_bola);

 i += 10;
 j −= 10;

 if(i > 405) {
 i = 45;
 j = 225;
 }

 float ang1 = radians(i); // convert degrees to radians
 float ang2 = radians(j); // convert degrees to radians
 pos1 = width/2 + (2 * sc * cos(ang1));
 pos2 = width/2 + (2 * sc * sin(ang1));
 pos3 = width/2 + (2 * sc * cos(ang2));
 pos4 = width/2 + (2 * sc * sin(ang2));

// PERFORMANCE −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

mediams = ((mediams * ii) + duration.TotalMilliseconds) / (ii +1);
mediafr = ((mediafr * ii) + framerate) / (ii +1);
ii++;

text("ms por iteracion: "+mediams.ToString(), 10, 10);
text("framerate: "+mediafr.ToString(), 10, 30);
}

We deactivate the frameset so that sketches can be runned as fast as it could be possible. So we can get
the values when every platform is forced to be runned in it highest performance. The execution of
every test was about one minute. With this time, the values of the variables had enought time to be
stable.

Next, we show our first test: we executed the Bounce example with dotnetprocessing and with
processing and we get these values:

Bounce performance in dotnetprocessing

Bounce performance in processing

As we can see, dotnetprocessing is 12 milliseconds faster per loop, and so, it can display about 7
frames per second more.

Next example is Collision, executed in both platforms. This is an interactive sketch where we can play
with the ball, as it was a ping pong game. We played with every sketch one minut and only lost one
ball in every one.

Collision performance in dotnetprocessing

Collision performance in processing

In this test, we can see that our processing framerate was much more high that in the original language.

We made more tests to be sure that it was always more efficient, and it wasn't chance. The next
example is Distance1D. The sketch is divided in 2 parts: the top and the bottom. The bars from the top
are moving to the opposite side of the bottom ones. It also is interactive, and the movement of the
mouse makes the bars be faster, and set de direction of the bars movements:

Distance1D performance in dotnetprocessing

Distance1D performance in processing

The last test was made with SineCosine example. Here we have a fixed square and 4 balls around it.
The balls are moved from side to side of the square. It was not a interactive sketch, but has 4 objects in
movement at the time:

SineCosine performance in dotnetprocessing

SineCosine performance in processing

As we had proved, in all tests dotnetprocessing had a lower time of looping and a bigger framerate.
Then, we can affirm that the executions with .NET Framework are more efficients than with Java
Virtual Machine in all cases: interactives or not sketches.

Chapter 12. TODO's
We are going to present here a list of things which we think will be desirable to address in a
short−term future:

Closing Internet Explorer: When displaying a sketch through Internet Explorer the user has to
press the Stop button in order to close the window. This is because while the main loop (which
is located in the AbstractRunning module) is running on the client's machine, Internet Explorer
events are not captured. The main loop has the Application.DoEvents(); but it doesn't solve the
problem. The solution seems to be related with threads. If we put the main loop in a different
thread the user can close Internet Explorer without problems, but unfortunatlly this has some
other drawbacks. Since the control is located in one thread and the code that paints to that
control is located in another thread random errors occur. This is a documented issue. In
Windows you can not paint from one thread to another.

•

Exporting to one unique DLL or EXE file: When exporting a sketch written in a syntax which
is not C# the generated files include various DLL files. This is because when the sketch is
written in C# the program creates programmatically one instance of the CSharp compiler and
builds all the application in one unique EXE or DLL file. But when the sketch is written in
another syntax the Running module has to be compiled with another compiler instance
different from CSharp and then an independent DLL is created. The solution for this may be
merging all the resulting DLL's in one unique DLL or EXE file. There is a suitable application
for this called ILMERGE but it only runs in the v2.0 .NET Runtime and doesn't work with
Mono.

•

Sketches that need more privileges when running through Internet Explorer:•
Decauple Syntax parsing: Now, if we want to add a new syntax in which users can write their
sketches (for example Delphi or C++), we have to modify the source code of the Parsing
module to handle the new syntax with a new compiler. If there was a way to decauple all this
and make the process of supporting new syntaxes more dynamic it would be great.

•

Complete Kernel Primitives:•
Complete Java Emulation:•
No more source code distributed with the binaries:•
Support for addicional libraries:•
Ask user for multiple dll exportation:•
Ask user for namespace when exporting to .NET User Control•

http://www.codeproject.com/csharp/begininvoke.asp
http://research.microsoft.com/~mbarnett/ILMerge.aspx

Chapter 13. Implementation status
We have implemented some of the primitives (more than the 50%) of the original language, but as it's
on beta versions, it changes continuously and the implementation becomes a bit complicated. Now, we
are going to explain the main original language parts, and the level of implementation of every one of
them:

Structure: It defines the structure of the language. It depends on the programming language. It
is completely implemented.

•

Environment: There are variables and functions that allow customize some aspects of sketches,
or get values, like framerate or width. The level of implementation is about 60%.

•

Data: This part is used to define primitives and to make data conversions. It's related to the
programming language and that's why it's partially implemented. It level of implementation is
about 35%.

•

Control: It makes possible to do iterations, relations and conditional sentences. The base
language of processing (or the new processing) completely implements it. So all the
functionalities are implemented by it.

•

Shape: It is one of the most important group of primitives. It allows drawing polygons, lines,
points and curves in a simple way. We have ported to the .NET platform 80% of primitives
approximately.

•

Input / Output: These primitives catch key and mouse events, let to print information in the
debug window, and it also load and save files of bytes and strings. With them, sketches can
interact with users. We have implemented 60% of primitives in the new environment.

•

Transform: It also is one of the basic part of the core of processing. With these functions, we
can change the properties of shapes, like scale or angle of rotation. Almost all the animated
sketches used it. Due to it importance, the level of implementation is about 90%.

•

Color: We can use these primitives to fill polygons or to change strokes or lines colours. We
have full control to make all possible colours. We have coded about 50% of primitives.

•

Image: This part essentially let load, display and modify images of many types. We only have
redesign about 30% of primitives.

•

Typography: With these functions, we can make words and phrases and we can display it in
sketches in a very simple way. We can change text attributes. The level of implementation of
this part is about 25%.

•

Math: Some of the compositions needed to make complexes calculations. This group of
primitives allows doing it. We have fully translated all the functions.

•

Sound: It let storing and playing sounds of the wave format. We discard it because it's one of
the newest features of the original language, and we focussed in essentials primitives.

•

Chapter 14. Writing documentation for
DotNetProcessing with DocBook
According to Dave Pawson's DocBook FAQ DocBook is:

DocBook provides a system for writing structured documents using SGML or
XML. It is particularly well−suited to books and papers about computer hardware
and software, though it is by no means limited to them.

−−Dave Pawson's DocBook FAQ
The good thing about DocBook is that when you write documentation you do exactly this, writing
documentation. You don't care about the format, only about the contents. At any time you can apply a
stylesshet to your document and generate the resulting HTML, PDF, PS, CHM, RTF, TXT, etc.

The source docbook code for DotNetProcessing documentation (what you are reading now) can be
seen here. It is also available by CVS for updating purposes. See the CVS DotNetProcessing
documentation section. GemDoc is used to generate the final documents.

Read more about DocBook on the following links:

The official home page for "DocBook: The Definitive Guide" O'Reilly book.•
The DocBook Project•
The DocBook Technical Committee•
A DocBook Tutorial•

http://www.dpawson.co.uk/docbook/index.html
http://dnetprocessing.sourceforge.net/docbook/dnpdoc.xml
http://www.gemdoc.net/
http://www.docbook.org/
http://docbook.sourceforge.net/
http://www.oasis-open.org/docbook/
http://opensource.bureau-cornavin.com/crash-course/

Chapter 15. Updating the DotNetProcessing
web site
At the time of writing this documentation the DotNetProcessing web page is hosted on Sourceforge
servers and does not use any of its php or mysql capabilities. The idea is to migrate the web page to
another server capable of running ASP.NET code. This would help to elaborate the DotNetProcessing
Arena. One of the options may be the GotDotNet Workspaces or some free Mono hosting.

The source web code for the DotNetProcessing web page is available by CVS for updating purposes.
See the CVS DotNetProcessing documentation section.

http://www.php.net/
http://www.mysql.com/
http://asp.net/
http://www.gotdotnet.com/workspaces/
http://www.monoforge.com/

Chapter 16. Roadmap
This document is intended to outline some mid and long term objectives to be achived with
DotNetProcessing

16.1. Mozilla Plugin for .NET User Controls

By now there is no such plugin that would be perfect for running DotNetProcessing sketchs in Mozilla
based internet browsers.

16.2. Support for Java and Visual Basic.NET syntax
under Linux

Since Mono only has support for C# we can't process Java and Visual Basic.NET syntax sketchs under
Linux.

Some research through IKVM may be the solution for Java. Visual Basic.NET mono compiler is under
development.

16.3. Live Processing

Live Processing is a live linux distribution that can run from a CD and has everything set up for
beggining to work with DotNetProcessing.

Live Processing could be based on Monoppix which is based on Knoppix which is based on Debian.

16.4. GTK# Environment

This would allow a unified rich multiplatform graphical interface por DotNetProcessing. It may not be
necessary since Mono WinForms are being developed pretty fast.

16.5. DotNetProcessing Arena

DotNetProcessing Arena intends to be a web based interface for the DotNetProcessing environment.
This would allow a user to test their own "on the fly" sketchs though the DotNetProcessing web site.

16.6. Windows Vista

Windows Vista is the scheduled next version of Microsoft Windows operating system, superseding
Windows XP. In this version, all the graphics subsystems have been rewritten and many things will
change for developers writing programs that deal with graphics, and DotNetProcessing is one of them.

Basically, there are two DotNetProcessing modules that might be affected of Windows Vista additions:

DotNetProcessing.Environment

http://www.mozilla.org/
http://www.mono-project.com/
http://www.ikvm.net/
http://www.mono-project.com/VisualBasic.NET_support
http://www.monoppix.com/
http://www.knoppix.org/
http://www.debian.org/
http://www.mono-project.com/WinForms
http://www.microsoft.com/windowsvista

This module makes use of WinForms controls included in the System.Windows.Forms
namespace. On Windows Vista, controls will be much richer and with great 3D capabilities.
Some new namespaces hanging from System.Windows will include the classes to instantiate
them. Another important thing is that on Windows Vista, user interfaces will be completly
independent of the application source code. They will be defined in a declarative XML based
language called XAML.

DotNetProcessing.Kernel
The Kernel is based completely in GDI+, the 2D .NET engine. Unfortunately GDI+ is only a
wrapper of the old GDI engine which is based on the Win32 windows API. On Windows
Vista, both 2D and 3D will be handled through the Avalon subsystem. Some new namespaces
also hanging from System.Windows will include the corresponding classes. In the future might
be interesting to rewrite this module according to the new Avalon subsystem.

The good news is that Windows Vista will be under development still for sometime and it will include
full compatibility with both GDI+ and WinForms. Microsoft is doing a lot of effort to transmit the
message that this will be true. And even there will be a mechanism called Crossbow to integrate
WinForms controls inside Avalon Controls and vice versa.

Anyway, it can be good to keep an eye on what's going on with all this new cool things that Windows
Vista is preparing for us and see how DotNetProcessing can incorporate them. Maybe we can see some
day XAML user interfaces embedded in a DotNetProcessing sketch.

The mono guys have also included a few lines on their roadmap relating to how Windows Vista can
affect their project.

http://en.wikipedia.org/wiki/XAML
http://msdn.microsoft.com/windowsvista/building/presentation/default.aspx
http://msdn.microsoft.com/msdntv/episode.aspx?xml=episodes/en/20060216CrossbowMH/manifest.xml
http://www.mono-project.com/Mono_Project_Roadmap#Mono_and_WinFX:_2006

Graphics in Windows Vista

16.7. DotNetProcessing for mobile devices

There is already a project focused on porting DotNetProcessing to the .NET Compact Framework. It's
in an early stage but when finished it will be possible to run processing code in devices such as PDAs
or mobile phones.

===
Generated by the free version of GemDoc. Purchase now at www.gemdoc.net/purchase
DocBook Made Easy − A single source, Windows based, multiple format solution for your document needs.

http://www.gemini1consulting.com/gemdoc
http://www.gemini1consulting.com/gemdoc/purchase

	Table of Contents
	 DotNetProcessing Documentation
	Jonatan Rubio
	Santi Serrano

	I. User Documentation
	Chapter 1. Introduction
	Chapter 2. The Processing Language
	2.1. Processing origins
	2.2. Process VS Timeline
	2.3. Processing as an intermediate language
	2.4. Related software
	 2.4.1. DBN
	 2.4.2. Logo
	 2.4.3. Flash
	 2.4.3.1. Bitmap VS Vectors
	 2.4.3.2. Animations

	 2.4.4. Director

	2.5. Processing is Open Source
	2.6. Digital art
	2.7. Processing in the world
	2.8. First steps

	Chapter 3. Why DotNetProcessing?
	Chapter 4. Installation
	4.1. Prerequisites
	 4.1.1. Windows
	 4.1.2. Linux

	4.2. Downloading
	4.3. Installing
	4.4. Running
	 4.4.1. Windows
	 4.4.2. Linux

	Chapter 5. Using the program
	5.1. Graphical Interface
	 5.1.1. Playing with the examples
	 5.1.2. The Syntax ComboBox
	 5.1.3. Writing your first sketch
	 5.1.4. Exporting your sketch
	 5.1.4.1. Executable
	 5.1.4.2. Web
	 5.1.4.3. .NET User Control
	 5.1.4.3.1. Using an exported sketch in Microsoft Visual Studio.NET
	 5.1.4.3.2. Using an exported sketch in a .NET application (without Visual Studio)
	 5.1.4.3.3. Going one step further (the full power of .NET on your hands)

	5.2. Command Line

	Chapter 6. A Case Study
	II. Developer Documentation
	Chapter 7. Getting the sources
	7.1. The easy way (download them)
	7.2. The not so easy way (get them by cvs)
	 7.2.1. Windows
	 7.2.2. Linux

	Chapter 8. Compiling
	8.1. Windows
	 8.1.1. Microsoft Visual Studio
	 8.1.2. Command Line

	8.2. Linux

	Chapter 9. Architecture
	9.1. DotNetProcessing building blocks
	9.2. The Syntax
	9.3. The Primitives
	9.4. The Surface
	9.5. Sketch Exportation
	9.6. Execution Model

	Chapter 10. Cross-platform issues
	Chapter 11. Dotnetprocessing vs Processing
	 11.1. Functional differences
	 11.2. Performance test

	Chapter 12. TODO's
	Chapter 13. Implementation status
	Chapter 14. Writing documentation for DotNetProcessing with DocBook
	Chapter 15. Updating the DotNetProcessing web site
	Chapter 16. Roadmap
	 16.1. Mozilla Plugin for .NET User Controls
	 16.2. Support for Java and Visual Basic.NET syntax under Linux
	 16.3. Live Processing
	 16.4. GTK# Environment
	16.5. DotNetProcessing Arena
	 16.6. Windows Vista
	 16.7. DotNetProcessing for mobile devices

